DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Mid Semester Examination – Oct 2019

Course: B. Tech in MECHANICAL ENGINEERING

Semster: IV

Subject Name: Strength of Material (SOM)

Subject Code: BT-MEC 403

Max Ma	rks: 20 Date: 13th March 2019 Time: 3 pm to 4 pm Duration		ır	
	Instructions to the Students:			
	1. Assume suitable data wherever necessary and State it clearly.	1		
	2. Figures to Right Indicate full Marks.	(60)	- T	36 1
	QUESTIONS	(CO)	(Level)	Mark
Q. 1	Attempt following Questions (6 Marks)		,	· · · · · · · · · · · · · · · · · · ·
	1. Define Stress	CO1	<u>C1</u>	01
	2. Define Poisson's ratio	CO1	C1	01
-	3. Define Longitudinal Stain	CO1	<u>C1</u>	01
$\langle \rangle$	4. Define Core of section	CO1	<u>C1</u>	01
	5. Define Proof resilience	CO1	<u>C1</u>	01
	6. Define Principal strain	CO1	C1	01
Q.2	Solve Any TWO of the following.			
(A)	Explain the Stress Strain Curve for brittle material	CO1	C2	03
(B)	A steel rod 40mm in diameter is 2.5 m long. Find the maximum stress	CO2	C4	03
	induced when pull of 80 kN is applied I) gradually ii)suddenly also find			
	instantaneous elogation. Take E=200 Gpa Comment on result.			<u> </u>
(C)	Compute normal and shere stress on failure plane if vertical and horizontal	CO2	C4	03
	normal stress acting on block are 60MPa (tension) and 30 MPa (comp)			
	and shere stress 20 MPa.			ļ
Q. 3	Solve ANY ONE of the following.			
(A)	State and derive relation between shear force and bending moment	CO3	C4	
(B)		CO3	C5	08
7.		'		
		1 .	ļ	
•	Draw SFD and BMD for the beam as shown in fig. and indicate all the			
	significant values at respective points on the beam.			1
	Best Luck			