DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Mid Semester Examination – March 2019

	Course: B. Tech in Informatio	on Technology Sem:	IV		
	Subject Name: Discrete Structures and Applications Subject Code: BTITC403				
	Max Marks: 20	Date: 13/03/2019	Duratio	n:-1 Hr.	
	Instructions to the Students: 1. Assume suitable data	wherever necessary.		(Level/CO)	Marks
). 1	Salast any one ention from the	o Collovvina avantia		(Level/CO)	
į. 1	Select any one option from the				6
	1. The cardinality of $A = \{5, 6\}$			CO1	
	a) 6 b) 5 c) 4				
	2. In a conditional statement, is the	the first part is the anteced	ent and the second part	CO1	
	a) Predicate b) Consequent	c) Subject d) Disjunct			
À	3. A function is said to be	if and only if i	f(a) = f(b) implies that a	CO2	
	= b for all a and b in the dom	ain of f.			
	a) One-to-many b) One-to-o	one c) Many-to-many d) N	Many-to-one		
	4. Let f and g be the function	from the set of integers to i	tself, defined by $f(x) = 2x$	CO2	
	+ 1 and $g(x) = 3x + 4$. Then the	ne composition of f and g is			
	a) $6x + 9$ b) $6x + 7$ c) $6x + 6$	(6) d) $6x + 8$			
	5. A coin is tossed 3 times. Fir	nd out the number of possib	ole outcomes.	CO2	
	a) None of these b) 8 c) 2	d) 1			
	6. Letters of SAP taken all at	a time can be written in		CO2	
	a) 2 ways b) 6 ways c) 24 w	vays d) 120 ways			
Q.2	Solve Any Two of the followi	ng.			3 X 2
•	Give reasons for each step ne	eeded to show that the follow	wing argument is valid.	CO1	
`	$[p^{(p)}q)^{(sVr)^{(r)}q)] \rightarrow ($				
	Steps	reasons			
	1) p				
	2) p→q				
	3) q				
	4) r→ !q				
	5) q → !r				
	6) !r				
	7) svr				
	8) s				
	9) ∴ svt				

(B) Prove following for all n>=1 by the principle of mathematical induction. CO₂ $1^2 + 3^2 + 5^2 + \dots (2n-1)^2 = n (2n-1) (2n+1)/3$ List all the combinations of size 3 that result for the letters m, r, a, f and t. CO₂ Q. 3 Solve Any One of the following. In how many ways can 12 different books be distributed among 4 children so CO₂ that a) each child gets three books? b) the two oldest children get four books each and the two youngest get two books each? (B) Let p(x), q(x) and r(x) be the following open statements. CO₁ $p(x): x^2-7x+10=0$ $q(x): x^2-2x-3=0$ r(x): x<0a) determine the truth or falsity of the following statements, where the universe is all integers. If a statement is false, provide a counterexample or explanation. 1) $\forall x [p(x) \rightarrow !r(x)]$ 2) $\exists x [q(x) \rightarrow r(x)]$

8

*** End ***

b) find the answers to part a) when the universe consists of all positive integers.