DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE – RAIGAD -402 103

Winter Semester Examination – December - 2019

Branch: Electronics and	Telecommunication	Fnaineerina	9	em :- III

Subject :- Electronic Devices & Circuits (BTEXC303) Marks: 60

Date:- 14/12/2019 Time:- 3 Hr.

Instructions to the Students

- 1. Each question carries 12 marks.
- 2. Attempt any five questions of the following.
- 3. Illustrate your answers with neat sketches, diagram etc., wherever necessary.
- 4. If some part or parameter is noticed to be missing, you may appropriately Assume it and should mention it clearly

		(Marks)
Q.1.A)	Draw and explain contraction of n channel JFET and Compare Common	6
	source, common drain, and common gate configuration of JFET.	
B)	Explain the VI characteristics of JFET. What factors are responsible for	6
	the shape of the characteristics in a different region?	
Q.2.A)	Explain n channel enhancement MOSFET and Datasheet for n channel	6
	EMOSFET specifies the following parameter, V _{GS} =10V, I _{D(on)=} 500mA, if	
	V _{GS(th)} for MOSFET is 1 V, determine the drain current for V _{GS} =4V?	
B)	Explain CMOS invertor with circuits. And draw & explain characteristics of	6
	CMOS invertor.	
(3.A)	Compare class A, class B, class AB, class C and class D amplifier.	6
B)	Draw the circuits of voltage series feedback amplifier and derive the	6
	expressions for input impedance R _{if} .	
(2.4.A)	With a neat diagram, explain hardly oscillator and derive an expression	6
	for the frequency of oscillation. Find the frequency of oscillation if	
	L1=L2=10 mH and C=0.1 µF.	
B)	With a neat diagram, explain the RC phase shift oscillator and derive an	6
	expression for the frequency of oscillation. And Calculate the value of C1	
	= C2 for the Wien bridge oscillator to operate at a frequency of 20 kHz.	
	Assume $R1 = R2 = 50 \text{ k}$ and $R3 = 3$, $R4 = 600$?	
().5.A)	Draw and explain internal block diagram of IC 555 and explain the	6
	working of Astable multivibrator	7
B)	Draw and explain a Monostable and bistable multivibrator.	6
).6.A)	Differentiate SMPS with linear regulated power supply	4
B)	Find the % load regulation of a power supply providing 100V unloaded	4
-,	and 95V at full load.	T
C)	Draw and explain the working principle of IC LM317	4