DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE - RAIGAD -402 103

Supplementary Winter Semester Examination - Dec. - 2019

Branch: Electrical and Electronics Engineering

Sem.:- IV

Subject:- Numerical Methods and Programming (BTEEC404)

Marks: 60

Date:- 02-12-2019

Time:-3 Hr.

Instructions to the Students

- 1. Each question carries 12 marks.
- 2. Attempt any five questions of the following.
- 3. Illustrate your answers with neat sketches, diagram etc., wherever necessary.
- 4. If some part or parameter is noticed to be missing, you may appropriately assume it and should mention it clearly.

(Marks)

Q.1. Answer the following

(12)

- a) What is MATLAB? Explain any six standard functions used in MATLAB.
- b) Explain different array operations using MATLAB.

Q.2. Answer the following

(12)

- a) Illustrate different types of errors with suitable example.
- b) Approximate the function $f(x) = \cos(x)$ at $x_{i-1} = \frac{\pi}{3}$ on the basis of the value of f(x) and its derivatives at $x_i = \frac{\pi}{4}$. Use Taylors series expansion with n=0 to 6.

Q.3. Answer any TWO the following (6 Marks each)

(12)

a) Find the value of $\cos(x)$ at x=1.74 from data given as:

X	1.7 1.74 1.78	1.82	1.86
sin	0.9916 0.9857 0.9781	0.9691	0.9584

- b) Illustrate Trapezoidal rule and Simpsons One-Third rule for Numerical Integration.
- c) Apply the Trapezoidal Rule to estimate the value of $\int_{0}^{\infty} e^{x^{2}} dx$ taking the the number 10 intervals.

Q.4. Answer any TWO the following (6 Marks each)

(12)

a) Apply Gauss Elimination method to solve the equations:

$$x+4y-z=-5$$

 $x+y-6z=-12$

$$3x - y - z = 4$$

b) Illustrate Iterative methods for solving Linear equations.

c) Use the	Newton-	Raphson	method to	estimate	the ro	ot of	$f(x)=e^{-x}-x$, employing the
$x_0 = 0$.			,				

Q.5. Answer any TWO the following (6 Marks each)

(12)

a) Fit a straight line to the following set of data. Also plot the line.

<u> </u>				
X	1	2	3	5
у	3	4	5	6

b) Estimate the Lagrange interpolation polynomial to fit the following data

i	0	1		2	3.00.000
X_i	0	1		2	3
$e^{x_i}-1$	0	1.71	83	6.3891	19.0855

Use the polynomial to estimate the value of $e^{1.5}$.

c) Explain the MATLAB function **spline** and **pchip** with suitable example.

Q.6. Answer the following

(12

- a) Determine an approximate value of *y* corresponding to x=1, using Euler's metod. Given that $\frac{dy}{dx} = x + y$ and y=1 when x=0.
- b) Apply Runge-Kutta fourth order method to solve $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2}$ with y(o) = 0 at x = 0.2, 0.4.

***P		100		
		IP H	B / L YA	
Sec. 20. 2 20. 1	~1115			N. W. A. A.