DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE – RAIGAD -402 103

Winter Semester Examination - December - 2019

Branch: Electrical Engg.

Sem.:-III

Subject with Subject Code: -SIGNALS & SYSTEMS (BTEEE305C) Marks: 60

Trialita, ou

Date: -19/12/2019

Time: -3 Hr.

Instructions to the Students

- 1. Each question carries 12 marks.
- 2. Attempt any five questions of the following.
- 3. Illustrate your answers with neat sketches, diagram etc., wherever necessary.
- 4. If some part or parameter is noticed to be missing, you may appropriately assume it and should mention it clearly

Q.1. Attempt the following

(12)

- a) What is signal? Define, Sketch and explain the Continuous Time and discrete time signals.
- **b)** I) Check whether the following signal is periodic or not. If signal is periodic find its fundamental period.

$$x(t) = \sin(\pi/4it) + \cos(\pi/3)t$$

- II) Check the following systems for causality.
 - i) y(n) = 7*x(n)
 - ii) y(n) = x(5-n)

Q.2. Attempt the following

(12)

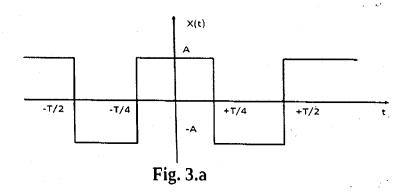
- a) what is system? Check the following system with respect to properties.
 - i). Time Invariance
 - ii). Linearity
 - iii). Causality

$$y(n) = \sum_{k=-\infty}^{n} x(k)$$

b) State and explain the properties of Discrete Time System.

OR

b) I) Check the following system for stability


$$h(n) = (0.5)^n u(n)$$

II) Check the following system for Linearity y(n) = n*x(n)

Q.3. Attempt the following

(12)

a) Find Fourier series representation of the waveform shown in fig.3.a

b) Find the Laplace Transform of the following signals $i \& x(t) = \sin wt \, u(t)$ $ii \& y(t) = t^3 + 3t^2 - 6t + 4$

OR **b)** Find the Fourier Transform of x (t) = e^{-at} cos(bt) u(t), t >0

Q.4. Attempt the following

(12)

- **a)** The LTI system having unit impulse response $h(t) = e^{-2t}u(t)$. Determine the output of the system to the input $x(t) \& e^{-t}u(t)$.
- b) Find the inverse Laplace transform of the following (s+7)

$$X(s) = \frac{(s+7)}{(s \dot{\iota} \dot{\iota} 2 - 3s - 10) \dot{\iota}}$$

Q.5. Attempt the following

(12)

- a) i) State and explain the sampling theorem? What is the effect of under sampling? Explain.
 - ii) Compute the Nyquist sampling rate for the following signal ? $x(t) = 5*\cos(50\pi t) + 8*\sin(300\pi t)$
- **b)** Find z-transform of $x(n) = a^n u[n] + a^{-n} u[-n-1]$. Sketch the ROC

Q.6. Attempt the following

(12)

a) Find the convolution sum of the two DT sequences

$$x(n)=(0.5)^{n}u(n)$$

 $h(n)=u(n)$

Sketch the output sequence.

b) Find the inverse z- transform of the following.

$$X(z) = \frac{2z^2}{(z+1)(z+2)^2}$$

******** PAPER END*********