DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

End Semester Examination – Winter 2018

Subject Name: Chemical Process Calculation Max Marks: 60 Date: 03/12/2018 Instructions to the Students: 1. Solve ANY FIVE questions out of the following. 2. The level question is based is mentioned in () in front of the question. 3. Use of non-programmable scientific calculators is allowed. 4. Assume suitable data wherever necessary and mention it clearly. Q.1 Solve the following. A) A mixture is 10 mole% ethyl alcohol, 75 mole% ethyl acctale (CiH6 O2) and 15 mole% acctic acid. Calculate the weight fraction of each of the compound. What is the average molecular mass of the mixture. What would be the weight (Kg) of a sample containing 25 km ol of ethyl acetate. B) A label has come off a cylinder of a gas in your laboratory. You know only that one species of gas is contained in the cylinder, but you don't know whether it is hydrogen, oxygen or nitrogen. To find out, you evacuate a 5 liter flask, seal it and weigh it, and then let the gas from he cylinder flow into it until gauge pressure causes 1.0 atm. The flask is reweighed and the mass of added gas is found to be 13 gm. Room temperature is 27° C and barometric pressure is 1 atm. What is that gas? C) A sample of caustic soda flakes contains 46%, Na ₂ O (by mass). Find the purity of the falkes. Q.2 Solve Any Two of the following. A) The waste acid from nitrating plant contains 30% H ₂ SO ₄ ,35% HNO ₃ and 35% water. The acid is to be concentrated to 39% H ₂ SO ₂ 42% HNO ₃ by addition of concentrated H ₂ SO ₂ containing 39% H ₂ SO ₂ 42% HNO ₃ by didition of concentrated H ₂ SO ₂ containing 39% H ₂ SO ₂ 42% HNO ₃ by addition of concentrated H ₂ SO ₂ containing 39% H ₂ SO ₂ and concentrated HNO ₃ containing 20% N ₂ SO ₃ containing 30% H ₂ SO ₂ 42% HNO ₃ by weight 20 and a start of the saturated brine contains 27% NaCl) Calculate the feed rate to the tyaporator is to groduce 1300 kg/hr of dry common salt from a feed solution containing 20% NaCl. The salt removed carries 20% of its weight as saturated brine Che saturated brine contains 27%	Course: B. Tech in Chemical /Petrochemical Engineering Sem: Hi				
Instructions to the Students: 1. Solve ANY FIVE questions out of the following. 2. The level question is based is mentioned in () in front of the question. 3. Use of non-programmable scientific calculators is allowed. 4. Assume suitable data wherever necessary and mention it clearly. (Level/CO) Marks Q. 1 Solve the following. A) A mixture is 10 mole% ethyl alcohol, 75 mole% ethyl acctate (C₄H₄ O₂) and 15 mole% acetic acid. Calculate the weight fraction of each of the compound. What is the average molecular mass of the mixture. What would be the weight (Kg) of a sample containing 25 km ol of ethyl acetate. B) A label has come off a cylinder of a gas in your laboratory. You know only that one species of gas is contained in the cylinder, but you don't know whether it is hydrogen, oxygen or nitrogen. To find out, you evacuate a 5 liter flask scal it and weigh it, and then let the gas from he cylinder flow into it until gauge pressure equals 1.0 atm. The flask is reweighed and the mass of added gas is found to be 13 gm. Room temperature is 2? C and barometric pressure is 1 atm. What is that gas? C) A sample of caustic soda flakes contains 74.6%, Na-O (by mass). Find the purity of the flakes. Q.2 Solve Any Two of the following: A) The waste acid from mitrating plant confains 30% H ₂ SO ₄ , 35% HNO ₃ and 35% water. The acid is to be concentrated 46.39% H ₂ SO ₄ , 42% HNO ₃ by addition of concentrated H ₃ SO ₆ containing 98% H ₂ SO ₄ and concentrated HNO ₃ containing 72% HNO ₃ (by weigh). Calculate the quantifies of three acid to be mixed to get 1000 kg/of desired mixed acid. B) Straw berries contain 15% solids and 85% water. To make strawberry jam, crushed strawberries are needed to make one kg of jam. (All percentage and ratio are by weight.) C) An evaporator is to produce 1300 kg/hr of dry common salt from a feed solution containing 17 with the salt removed carries 20% of its weight as saturated brine? The salt removed carries 20% of its weight as saturated brine? The salt removed carries 20% of		t Name: Chemical Process Calculation	ubject Code: BTCH(302	
2. The level question expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question. 3. Use of non-programmable scientific calculators is allowed. 4. Assume suitable data wherever necessary and mention if clearly. (Level/CO) Marks Q.1 Solve the following. A) A mixture is 10 mole% ethyl alcohol, 75 mole% ethyl acetate (CaHa O₂) and 15 mole% acetic acid. Calculate the weight fraction of each of the compound. What is the average molecular mass of the mixture in Whit would be the weight (Kg) of a sample containing 25 km ol of ethyl acetate. B) A label has come off a cylinder of a gas in your laboratory. You know only that one species of gas is contained in the cylinder, but you don't know whether it is hydrogen, oxygen or nitrogen. To find out, you evacuate a 5 liter flask, seal it and weigh it, and then let the gas from he eylinder flow into it until gauge pressure equals 1.0 atm. The flask is reweighed and the mass of added gas is found to be 13 gm. Room temperature is 27° C and barometric pressure is 1 atm. What is that gas? C) A sample of caustic soda flakes contains 74.6%, Na₂O (by mass), Find the purity of the flakes. Q.2 Solve Any Two of the following. A) The waste acid from nitrating plant contains 30% H ₂ SO ₄ , 35% HNO₃ and 35% water. The acid is to be concentrated to 39% H ₂ SO ₄ and concentrated HNO₃ containing 72% HNO₃ (by weight) Calculate the quantities of three acid to be mixed to get 1600 kg of flostred mixed acid. B) Straw berries contain 15% solids and 85% water. To make strawberry jam, crushed strawberries and sugar are mixed in a 45 : 55 ratio and the mixture is heated to evaporate water until residue contain one tired water by mass. Calculate how many kg of strawberries are needed to make one kg of jam. (All percentage and ratio are by weight.). C) An evaporator is to produce 1300 kg/hr of dry common salt from a feed solution containing 20% NaCl. The salt removed carries 20% of its weight as saturated brine/The sal	IVIAX IVI		Juration: 3 Hr.		
 Q.1 Solve the following. A) A mixture is 10 mole% ethyl alcohol, 75 mole% ethyl acetate (CiH₈ O₂) and 15 mole% acetic acid. Calculate the weight fraction of each, of the compound. What is the average molecular mass of the mixture. What would be the weight (Kg) of a sample containing 25 km ol of ethyl acetate. B) A label has come off a cylinder of a gas in your laboratory. You know only that one species of gas is contained in the cylinder, but you don't know whether it is hydrogen, oxygen or nitrogen. To find out, you evacuate a 5 liter flask, seal it and weigh it, and then let the gas from he cylinder flow into it until gauge pressure equals 1.0 atm. The flask is reweighed and the mass of added gas is found to be 13 gm. Room temperature is 27° C and barometric pressure is 1 atm. What is that gas? C) A sample of caustic soda flakes contains 74.6% Na₂O (by mass). Find the purity of the flakes. Q.2 Solve Any Two of the following. A) The waste acid from nitrating plant contains 30% H₂SO₄,35% HNO₃ and 35% water. The acid is to be concentrated to 39% H₂SO₄ 42% HNO₃ by addition of concentrated H₂SO₄ containing 98% H₂SO₄ 42% HNO₃ by addition of concentrated H₂SO₄ containing 98% H₂SO₄ 47% fibre acid to be mixed to get 1000 kg of desired mixed acid. B) Straw berries contain 15% solids and 85% water. To make strawberry jam, crusiced strawberries and sugar are mixed in a 45: 55 ratio and the mixture is heated to evaporate water until residue contain one tired water by mass. Calculate how many kg of strawberries are needed to make one kg of jam. (All percentage and ratio are by weight.) C) An evaporator is to produce 1300 kg/hr of dry common salt from a feed solution containing 20% NaCl. The salt removed carries 20% of its weight as saturated brine The saturated brine contains 27% NaCl) Calculate the feed rate to the evaporator in kg/hr. Q.3 Solve the following. A) The oxidation of ethylene to produc		 The level question/expected answer as per OBE or the Course Outcome (Conquestion is based is mentioned in () in front of the question. Use of non-programmable scientific calculators is allowed. 	O) on which the		
 A mixture is 10 mole% ethyl alcohol, 75 mole% ethyl acetate (C4H₈ O₂) and 15 mole% acetic acid. Calculate the weight fraction of each of the compound. What is the average molecular mass of the mixture. What would be the weight (Kg) of a sample containing 25 km ol of ethyl acetate. B) A label has come off a cylinder of a gas in your laboratory. You know only that one species of gas is contained in the cylinder, but you don't know whether it is hydrogen, oxygen or nitrogen. To find out, you evacuate a 5 liter flask, scal it and weigh it, and then let the gas from he cylinder flow into it until gauge pressure equals 1.0 atm. The flask is reweighed and the mass of added gas is found to be 13 gm. Room femperature is 27° C and barometric pressure is 1 atm. What is that gas? C) A sample of caustic soda flakes contains 74.6% Na₂O (by mass). Find the purity of the flakes. Q.2 Solve Any Two of the following. A) The waste acid from mitrating plant contains 30% H₂SO₄,35% HNO₃ and 35% water. The acid is to be concentrated to 39% H₂SO₄, 42% HNO₃ by addition of concentrated H₂SO₄ containing 98% H₂SO₄ and concentrated HNO₃ containing 72% INNO₃ (by weight). Calculate the quantities of three acid to be mixed to get 1000 kg of desired mixed acid. B) Straw berness contain 15% solids and 85% water. To make strawberry jam, cruished strawberries and sugar are mixed in a 45: 55 ratio and the mixture is heated to evaporate water until residue contain one tired water by mass. Calculate how many kg of strawberries are needed to make one kg of jam. (All percentage and ratio are by weight.) C) An evaporator is to produce 1300 kg/hr of dry common salt from a feed solution containing 20% NaCl. The salt removed carries 20% of its weight as saturated brine The saturated brine contains 27% NaCl) Calculate the feed rate to the evaporator is kg/hr. Q.3 Solve the following. A) The oxidation of ethylene to produce ethylene oxide proceeds a			(Level/CO)	Marks	
mole% acetic acid. Calculate the weight fraction of each of the compound. What is the average molecular mass of the mixture. What would be the weight (Kg) of a sample containing 25 km ol of ethyl acetate. B) A label has come off a cylinder of a gas in your laboratory. You know only that one species of gas is contained in the cylinder, but you don't know whether it is hydrogen, oxygen or nitrogen. To find out, you evacuate a 5 liter flask, seal it and weigh it, and then let the gas from he cylinder flow into it until gauge pressure equals 1.0 atm. The flask is reweighed and the mass of added gas is found to be 13 gm. Room temperature is 27°C and barometric pressure is 1 atm. What is that gas? C) A sample of caustic soda flakes contains 74.6%, Na ₂ O (by mass). Find the purity of the flakes. Q.2 Solve Any Two of the following. A) The waste acid from nitrating plant contains 30% H ₂ SO ₄ , 42% HNO ₃ by addition of concentrated H ₂ SO ₄ containing 98% H ₂ SO ₄ and concentrated HNO ₃ containing 72% HNO ₃ (by weight). Calculate the quantities of three acid to be mixed to get 1000 kg of desired mixed acid. B) Straw berries contain 15% solids and 85% water. To make strawberry jam, crushed strawberries and sugar are mixed in a 45 : 55 ratio and the mixture is heated to evaporate water until residue contain one tired water by mass. Calculate how many kg of strawberries are needed to make one kg of jam. (All percentage and ratio are by weight.) C) An evaporator is to produce 1300 kg/hr of dry common salt from a feed solution containing 20% NaCl. The salt removed carries 20% of its weight as saturated brine (The saturated brine contains 27% NaCl) Calculate the feed rate to the evaporator in kg/hr. Q.3 Solve the following. A) The oxidation of ethylene to produce ethylene oxide proceeds according to the equation 2C ₃ H ₄ + O ₂ 2 C ₂ H ₄ O	Q. 1	Solve the following.			
one species of gas is contained in the cylinder, but you don't know whether it is hydrogen, oxygen or nitrogen. To find out, you evacuate a 5 liter flask, seal it and weigh it, and then let the gas from he cylinder flow into it until gauge pressure equals 1.0 atm. The flask is reweighed and the mass of added gas is found to be 13 gm. Room temperature is 27° C and barometric pressure is 1 atm. What is that gas? (C) A sample of caustic soda flakes contains 74.6% Na ₂ O (by mass). Find the purity of the flakes. (D) A sample of caustic soda flakes contains 30% H ₂ SO ₄ ,35% HNO ₃ and 35% water. The acid is to be concentrated to 39% H ₂ SO ₄ , 42% HNO ₃ by addition of concentrated H ₂ SO ₄ containing 98% H ₂ SO ₄ and concentrated HNO ₃ containing 72% HNO ₃ (by weight). Calculate the quantities of three acid to be mixed to get 1000 kg of desired mixed acid. (B) Straw berries contain 15% solids and 85% water. To make strawberry jam, crushed strawberries and sugar are mixed in a 45 : 55 ratio and the mixture is heated to evaporate water until residue contain one tired water by mass. Calculate how many kg of strawberries are needed to make one kg of jam. (All percentage and ratio are by weight.) (C) An evaporator is to produce 1300 kg/hr of dry common salt from a feed solution containing 20% NaCl. The salt removed carries 20% of its weight as saturated brine (The saturated brine contains 27% NaCl) Calculate the feed rate to the evaporator in kg/hr. (Q.3 Solve the following. A) The oxidation of ethylene to produce ethylene oxide proceeds according to the equation 2C ₂ H ₄ + O ₂ 2 C ₂ H ₄ O — Other contains 2C ₂ H ₄ + O ₂ 2 C ₂ H ₄ O — Other contains 2C ₂ H ₄ + O ₂ 2 C ₂ H ₄ O — Other contains 2C ₂ H ₄ O —	A)	mole% acetic acid. Calculate the weight fraction of each of the compound, is the average molecular mass of the mixture. What would be the weight (K	What	04	
 Q.2 Solve Any Two of the following. A) The waste acid from nitrating plant contains 30% H₂SO₄,35% HNO₃ and 35% water. The acid is to be concentrated to 39% H₂SO₄ 42% HNO₃ by addition of concentrated H₂SO₄ containing 98% H₂SO₄ and concentrated HNO₃ containing 72% HNO₃ (by weight). Calculate the quantities of three acid to be mixed to get 1000 kg of desired mixed acid. B) Straw berries contain 15% solids and 85% water. To make strawberry jam, crushed strawberries and sugar are mixed in a 45 : 55 ratio and the mixture is heated to evaporate water until residue contain one tired water by mass. Calculate how many kg of strawberries are needed to make one kg of jam. (All percentage and ratio are by weight.) C) An evaporator is to produce 1300 kg/hr of dry common salt from a feed solution containing 20% NaCl. The salt removed carries 20% of its weight as saturated brine(The saturated brine contains 27% NaCl) Calculate the feed rate to the evaporator in kg/hr. Q.3 Solve the following. A) The oxidation of ethylene to produce ethylene oxide proceeds according to the equation 2C₂H₄ + O₂ 2 C₂H₄O → 	B)	one species of gas is contained in the cylinder, but you don't know whethe hydrogen, oxygen or nitrogen. To find out, you evacuate a 5 liter flask, s and weigh it, and then let the gas from he cylinder flow into it until a pressure equals 1.0 atm. The flask is reweighed and the mass of added g found to be 13 gm. Room temperature is 27°C and barometric pressure is 1	r it is seal it gauge as is	04	
 A) The waste acid from nitrating plant contains 30% H₂SO₄,35% HNO₃ and 35% water. The acid is to be concentrated to 39% H₂SO₄ 42% HNO₃ by addition of concentrated H₂SO₄ containing 98% H₂SO₄ and concentrated HNO₃ containing 72% HNO₄ (by weight) Calculate the quantities of three acid to be mixed to get 1000 kg of desired mixed acid. B) Straw berries contain 15% solids and 85% water. To make strawberry jam, crushed strawberries and sugar are mixed in a 45 : 55 ratio and the mixture is heated to evaporate water until residue contain one tired water by mass. Calculate how many kg of strawberries are needed to make one kg of jam. (All percentage and ratio are by weight.) C) An evaporator is to produce 1300 kg/hr of dry common salt from a feed solution containing 20% NaCl. The salt removed carries 20% of its weight as saturated brine (The saturated brine contains 27% NaCl) Calculate the feed rate to the evaporator in kg/hr. Q.3 Solve the following. A) The oxidation of ethylene to produce ethylene oxide proceeds according to the equation 2C₂H₄ + O₂ 2 C₂H₄O → 06 	C)		ourity Understand	04	
water. The acid is to be concentrated to 39% H ₂ SO ₄ , 42% HNO ₃ by addition of concentrated H ₂ SO ₄ containing 98% H ₂ SO ₄ and concentrated HNO ₃ containing 72% HNO ₃ (by weight). Calculate the quantities of three acid to be mixed to get 1000 kg of desired mixed acid. B) Straw berries contain 15% solids and 85% water. To make strawberry jam, crushed strawberries and sugar are mixed in a 45 : 55 ratio and the mixture is heated to evaporate water until residue contain one tired water by mass. Calculate how many kg of strawberries are needed to make one kg of jam. (All percentage and ratio are by weight.) C) An evaporator is to produce 1300 kg/hr of dry common salt from a feed solution containing 20% NaCl. The salt removed carries 20% of its weight as saturated brine (The saturated brine contains 27% NaCl) Calculate the feed rate to the evaporator in kg/hr. Q.3 Solve the following. A) The oxidation of ethylene to produce ethylene oxide proceeds according to the equation 2C ₂ H ₄ + O ₂ 2 C ₂ H ₄ O → 06	Q.2	Solve Any Two of the following.			
 B) Straw berries contain 15% solids and 85% water. To make strawberry jam, crushed strawberries and sugar are mixed in a 45 : 55 ratio and the mixture is heated to evaporate water until residue contain one tired water by mass. Calculate how many kg of strawberries are needed to make one kg of jam. (All percentage and ratio are by weight.) C) An evaporator is to produce 1300 kg/hr of dry common salt from a feed solution containing 20% NaCl. The salt removed carries 20% of its weight as saturated brine (The saturated brine contains 27% NaCl) Calculate the feed rate to the evaporator in kg/hr. Q.3 Solve the following. A) The oxidation of ethylene to produce ethylene oxide proceeds according to the equation 2C₂H₄ + O₂ 2 C₂H₄O	A)	water. The acid is to be concentrated to 39% H ₂ SO ₄ , 42% HNO ₃ by addition concentrated H ₂ SO ₄ containing 98% H ₂ SO ₄ and concentrated HNO ₃ containing 72% HNO ₃ (by weight). Calculate the quantities of three acid to be mixed	ion of aining	06	
 C) An evaporator is to produce 1300 kg/hr of dry common salt from a feed solution containing 20% NaCl. The salt removed carries 20% of its weight as saturated brine (The saturated brine contains 27% NaCl) Calculate the feed rate to the evaporator in kg/hr. Q.3 Solve the following. A) The oxidation of ethylene to produce ethylene oxide proceeds according to the equation 2C₂H₄ + O₂ 2 C₂H₄O	B)	crushed strawberries and sugar are mixed in a 45: 55 ratio and the mixt heated to evaporate water until residue contain one tired water by mass. Calhow many kg of strawberries are needed to make one kg of jam. (All percent	ure is culate	06	
A) The oxidation of ethylene to produce ethylene oxide proceeds according to the understand equation $2C_2H_4 + O_2$ $2C_2H_4O$ \longrightarrow	e)	An evaporator is to produce 1300 kg/hr of dry common salt from a feed so containing 20% NaCl. The salt removed carries 20% of its weight as satisfine (The saturated brine contains 27% NaCl) Calculate the feed rate	urated	06	
A) The oxidation of ethylene to produce ethylene oxide proceeds according to the understand equation $2C_2H_4 + O_2$ $2C_2H_4O$ \longrightarrow	Q.3	Solve the following.			
		The oxidation of ethylene to produce ethylene oxide proceeds according to tequation	he Understand	d 06	

The feed to the reactor contains 100 kmol C₂H₄ and 100 kmol O₂. i)Which is the limiting reactant? ii) What is the percentage excessof other reactant? iii) If the reaction proceeds to completion, howmuch of the excess reactant will be left; howmuch C₂H₄O will be formed and what is the extent of reaction?

In a Deacon process for manufacturing chlorine, hydrochloric acid gas is oxidized with air . The reaction taking place is:

Apply

06

4HCL + $O_2 \rightarrow 2 CL_2 + H_2 O$

If the air is used in excess of 30 % of that theoretically required, and if the oxidation is 80% complete, calculate the composition by volume of dry gases leaving the reaction chamber.

Solve Any Two of the following. **Q.4**

The dry bulb temperature and the dew point of an ambient air were found to be 29°C and 18°C respectively. The barometer reads 750 mm Hg pressure.

Understand

Apply

06

Compute

i) Absolute humidity ii) % Relative humidity

iii) % Humidity

Data V.P. of water at 18° C = 20 mmHg V.P. of water at 29° C = 42 mm Hg

06

Fresh orange juice contain 12 mass % solid and balance water and concentrated orange juice contain 42% solids. Initially a single stage evaporation process was used for concentration, but volatile constituent of juice escaped with water, resulting in flat taste. The present process overcomes this problem by bypassing the evaporator with a fraction of fresh juice that enters the evaporator is concentrated to 58% solids and the product is mixed with bypass fresh juice to achieve the desired final concentration of solids. Calculate the amount of concentrated juice produced per 100 kg of fresh juice fed to the process and fraction of feed that bypasses the evaporator

C) With neat flow diagram, explain recycle bypass and purging operations in process industries and their importance.

Remember

Solve the following

Tin is melted in an open pan using jacket. The jacket is fed with eutectic mixture of diphenyl-diphenyl oxide at 1.73 kgf/cm²a. Tin is fed to the pan at 30°C. Calculate the quantity of eutectic mixture condensed per 100 kg of tin melted at its melting point temperature. Assume no subcooling of vapors.

Apply

06

06

06

Data for tin: Molecular Weight-118.7

Melting point --- 231.8°C, Latent heat of fusion -1720 kcal/kmol

Specific heat of solid tin

C = 5.05 + 0.0048 T (keal/kmol.K)

Where T is in degree Kelvin.

Data for Diphenyl-Diphenyloxide mixture at 1.73 kgf/cm² a

Saturation Temp. ⁰C

Enthalpy(kcal/kg)

Latent Sensible 66.5 120.5

Total 187.00

280 B) Calculate the quantity of heat to be added to raise the temperature of 5 kmol of Understand CO₂ from 25 to 500 °C. Heat capacity is given by the following equation.

 $Cp = 19.774 + 73.375 \times 10^{-3} \text{ T} - 56.02 \times 10^{-6} \text{ T}^2 + 17.155 \times 10^{-9} \text{ T}^3$

4452706A15C42C8064EA682DAF0F7E80